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FOUR-DIMENSIONAL DERIVATION OF THE
ELECTRODYNAMTIC JUMP CONDITIONS, TRACTIONS, AND
POWER TRANSFER AT A MOVING BOUNDARY

By Robert C. Costen
Langley Research Center

SUMMARY

The purpose of this report is to derive the electrodynamic boundary con-
ditions, surface tractions, and surface power transfer in complete form for
easy application to boundary value problems in magnetofluiddynamics.

Features of this report include:

Derivation of the boundary conditions starts from Maxwell's equations in
four-dimensional integral form. The boundary conditions are obtained directly
in covariant form and are then translated to three-dimensional language.

The inclusion of surface charge and surface current leads to a general cur-
rent boundary condition containing a surface curvature term. Surface current
is found to have a component normal to the surface due to convection of surface
charge in this direction.

A surface form for the electromagnetic momentum and energy conservation
laws is derived from the boundary conditions by using the same method by which
the volumetric conservation laws are derived from Maxwell's equations. This
surface form gives the electromagnetic tractions and energy transfer at the
surface in two forms: (a) in terms of the jump in the stress-energy tensor
and (b) in terms of surface current, surface charge, and the mean fields across
the surface.

A set of identities is obtained for the force density and power-transfer
density associated with the antisymmetrical part of the stress-energy tensor.
The merit of these identities rests largely on their value as evidence in the
controversy over the symmetry of the stress-energy tensor.

INTRODUCTION

Although the electrodynamic equations for moving media were established
early in the twentieth century by Minkowski, the corresponding boundary



conditions have been in a state of continuing development up to the present
time. Maxwell's equations were shown to hold unaltered in moving media, and
new velocity-dependent constitutive relations were derived to take account of
the motion's influence on the electric and magnetic response of the medium.
The constitutive equations - although necessary for the solution of actual
problems - do not affect the boundary conditions (which are derived directly
from Maxwell's equations) and hence are not relevant in the present derivation.

At a fixed interface the boundary conditions are the familiar set given by
King (ref. 1, p. 169) (in the notation used herein)

B>

«[8]-T &-T-0

a.[3]-n
fi x [iﬂ =0

n )

. [ﬁﬂ =0

. g A g a'r]
dlvsurfaceL +n - J + -5%- =

where

—

B magnetic field strength
-

E electric field strength
—]3’ electric excitation

-

H magnetic excitation

-

J electric current density
1 surface charge density
-

L surface current density
a local unit normal

discontinuity G* - G=, with * signs relative to 1A

=)
&y

t time coordinate

But this set of jump conditions does not hold for the large class of prob-
lems involving moving boundaries. Included in this class are such problems as



electromagnetic fields coupled to surface waves on a fluid, moving shock waves
in a plasma, and moving solid bodies.

The early derivations of Jjump conditions at a moving boundary are described
in detail by Pauli (ref. 2, pp. 103-104) and Sommerfeld (ref. 3, pp. 285-288).
These produced formulas for certain cases but failed to yield general conditions
of the type given for boundaries at rest. The present approach is different
from early derivations and follows a procedure first applied to electrodynamics
by Luneburg in 1944 (ref. 4, pp. 15-22) and later by Truesdell and Toupin in
1958 (ref. 5, pp. 669 and 676-677). Neither of these works_included the effects
of surface charge density 1 and surface current density L which are essen-
tial in many applications. Extending the derivations to include these surface
densities is the prime concern of this paper.

The procedure is inherently four-dimensional, involving integrations in
Minkowski space. Consequently, a suitable approach is to go the full route to
special relativity, to start from Maxwell's equations in four-dimensional
covariant form, and afterwards to translate the results to three-dimensional
language.

The four-dimensional statement of the electrodynamic momentum and energy
conservation laws bears formal similarity to Maxwell's four-dimensional equa-

tion for ﬁ? and 'ﬁ. Hence the surface form of the conservation laws is formally

similar to the ﬁ' and D Dboundary condition and may be written by inspection.
The same is true for a group of identities associated with the antisymmetrical
part of the stress-energy tensor.

Although the derivations are new, a number of the simpler results presented

here were obtained previously in reference 6 (chs. I and II) by using a three-
dimensional technique and the Lorentz transformation.

SYMBOLS AND NOTATION

Mathematical Notation

unit spatial vectors

=, 6> spatial vectors and tensors
* dual vectors and tensors
[:] Jjump across a surface of discontinuity

<<::>> mean value across a surface of discontinuity

v spatial gradient operator, El éi + 32 g% + 33 gl
> Z



i . 2090 L5, 9 ¢ 0.5 10

O space-time gradient operator, ij ==+ ip — + iz — + i) — =
» 1 % 2 oy 3 oz 4 ic ot
N modulus of a spatial vector or of a four-vector
i =|/—l
Superscripts:
a antisymmetric part of stress-energy tensor or a derivative thereof
s symmetric part of stress-energy tensor or a derivative thereof
+ limiting value as a surface of discontinuity is approached from the *
sides, with * designations relative to surface unit normal

Subscripts:

Subscripts obey the summation convention of Cartesian tensor notation.

Latin subscripts run from 1 to 3 (x,y,z) with the exception of t which

represents time.
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Greek subscripts run from 1 to 4 (x,y,z,ict).

Commas in subscripts denote partial differentiation. For example,

ol

aXi )

Symbols
area segment of a two-dimensional surface, meters?
magnetic field strength, webers/meter2
mean surface curvature, meter-1
speed of light in vacuum, meters/second
electric excitation, coulombs/meter?

electric field strength, volts/meter

electromagnetic field strength four-tensor, volts/meter

electromagnetic excitation four-tensor, amperes/meter



magnetic excitation, amperes/meterA
electric current density, coulombs/meterg—second
electromagnetic surface traction, newtons/meter2

electromagnetic force density, newtons/meter3

SN e Y

electric surface current density, coulombs/meter-second

Zaﬁ Lorentz transformation matrix

1 closed contour line bounding area a of a two-dimensional
surface, meters

__)

M= %—(ﬁ’x D+HX ]—3)), a vector derived from Tz'B

my, unit four-normal to the three-dimensional hypersurface ¢(x,y,z,t) = O
in space-time

N normal velocity, or speed of displacement, of a surface of electro-
magnetic discontinuity, meters/second

ny (or i) unit normal to a two-dimensional surface

P surface power transfer from electromagnetic fields to other forms of
energy, watts/meter2

p volumetric power transfer from electromagnetic fields to other forms
of energy, watts/meter>

- >

R=2LDxE - —l-i?x }_I) , a vector derived from T

2 el aB

S closed three-dimensional hypersurface in space-time, meters>

Tij Maxwell stress tensor, EiDJ + HiBj - Wﬁij, or spatial part of TaB’
newtons,/metere

TaB electrodynamic stress-energy tensor, newtons/meter2

t time coordinate, second

\' four-dimensional hypervolume in space-time, meters

12 =2, 2 =2 .
W electrodynamic energy density, z\E - B+D - E) joules/meter>



Bapye

T

Cartesian spatial coordinates (x,y,z), meters

Cartesian space-time coordinates (x,y,z,ict), meters

electric four-current density (J1,Jp,J3,1cp), coulombs/meter2-second
Kronecker delta

Levi-Civita symbol defined by equation (31)

electric permittivity of vacuum, farads/meter
Levi-Civita symbol defined by equation (C6)

electrice surface charge density, coulombs/meter2

electromagnetic surface quasi-four-force density (Kl,Kg,KB,%P>,

newtons/meter?

electromagnetic four-force density (kl,kg,kj,%p), newtons/meter3

electric surface quasi-four-current density (Ll,Lg,LB,icn),

coulombs/meter-second
magnetic permeability of vacuum, henrys/meter

outward unit four-normal on a closed three-dimensional hypersurface 8
in space-time

electric charge density, coulombs/meter5

three-dimensional area on hypersurface o(x,y,z,t) = Constant in
space-time, meters’

small dimensionless parameter

o(x,y,2,t) a continuously twice-differentiable function; ¢ = Constant repre-

%

Vap

sents a moving and deforming surface in space (fig. 1) and a
three-dimensional hypersurface in space-time (fig. 2)

four-vector dual to tensor W%p,v

arbitrary tensor



I. ELECTRODYNAMIC JUMP CONDITIONS AT A MOVING BOUNDARY

General Considerations

Moving surfaces.- Consider a two-dimensional surface in arbitrary motion
defined by o(x,y,z,t) = 0, where ¢ is a continuously twice-differentiable
function of Cartesian spatial and time coordinates. (See fig. 1.) The local
unit normal to the surface is given by

ny = ?,i (1) y
||

provided |¥p| does not vanish on the

boundary, where Latin subscripts run
from 1 to 3, and where commas in the
subscript denote partial differentiation.

The local normal velocity of the

surface, which is called the local speed (+) Region

of displacement, or simply the speed, of x

the surface may be determined as in (-) Region

Truesdell and Toupin (ref. 5, pp. 498- z e L Toodimensional surf i:'%fﬂro
. i s igure L. - [wo-dimensional surrace {edge view

11-99). For a point w},ﬁ'Ch mov?s with the moving through space with local speed of dis-

surface, the total differential placement N.

A =@ 5 dxy +@ 4 dt =0
Transposing terms and dividing by |[W| dt yields

s de = e q),t
J at ||

The coordinates xy are those of a point which remains on the surface; hence,

the left-hand side of this equation is the surface speed, which is denoted N
in order to avoid confusion with the usual notation for fluid velocity. Thus,
the local speed of a surface o(x,y,z,t) = 0 is given by

- — (2)

where N > O for motion in the sense of fi (eq. (1)). Equations (1) and (2)
may be used to write the total differential dyp as

@ = |%|(ny ax; - N at) (3)
T



Take the moving surface ¢@ = 0 to be a surface of electromagnetic dis-
continuity, across which electric fields i? and D, magnetic fields B and B
current density J, and charge density p may have finite increments. Surface
current density L and surface charge density mn may also be prescribed on
the surface.

It is perhaps worthwhile to note that the moving surface referred to here
is an abstract geometrical entity and quite independent (in concept) of the
material medium or of its motion. For example, the medium on one side (or on
both sides) may be in tangential motion while the surface remains at rest, as
in steady, inviscid flow. Again, the medium on either side may have normal
velocity components while the speed of the surface is zero, as with a stationary
shock wave. Moreover, discontinuities in the medium are not necessary for the
fields to be discontinuous. Surfaces of electromagnetic discontinuity can occur
w1th1n a homogeneous medium, as at the front of a step-shaped light wave, or at
the Gerenkov light cone of an electron which exceeds the speed of light in the
medium,

It is clearly the motion of the electromagnetic discontinuity surface which
is directly relevant here - not the motion of matter. Hence, without
restricting the latter, it seems reasonable that N, the surface speed of dis-
placement, is the only velocity that will appear in the boundary conditions.
This viewpoint has previously been expressed by Goldstein (ref. 7, pp. 69-70).

Now view the surface ¢ = 0 1in Minkowski space - the four-dimensional
space-time continuum of special relativity - and take the coordinate axes to be
X,¥,%Z,ict. 1In this representation ¢ = 0 1is a three-dimensional hypersurface
in space-time. (See fig. 2.) The unit four-normal to this hypersurface is

given by

a P
" mg, = = (k)

— [=52

where Greek subscripts run from 1 to 4, and

Ma is the four-dimensional gradient defined by
(+) Region ~ ~
O= :|_A+12a i3i+iu.i—a—
X; ox By oz ic ot
(—) Region
(52)
?{xyzt)=0

The denominator in equation (4) is real and

Figure 2- Three-dimensional hypersurface in positive, since by equations (1) and (2)
space-time (edge view with spatial coordinates

contracted).
_ N2
|Oe| = [9,89,8 = | Wl 1 - = (5b)



In four-vector notation the total differential dp becomes

dp = 9,5 dxg = |OP|mg dxp (6)

Maxwell's equations.- Maxwell's equations in four-dimensional integral form
(with Cartesian tensor notation) are

ey as = [[[[ra v (7a)

S%B(Faﬂ“y * Fppha * F?aFB)dS =0
or (7o)

* _
Sﬁig;FBpB ds = 0 (Te)

where V is an arbitrary four-dimensional hypervolume in space-time; S 1is the
closed three-dimensional hypersurface bounding V; Ha is the outward unit

four-normal on S; and

Xa, = (X:Y:Z:iCt) (8a)
FG = (J]_,JQ;J3:iCp) (Bb)
0 Hx -Hp ~ieDy
-H 0 Hy - -iecDo
fup = ? (8e)
H2 -Hl 0 —iCDB
icDy 1icDp  icDj3 0



0 CB3 -cBp -iE1

_CB5 (0] ¢By ~-iEo

FG'B = (8d)
cB, -cB] O  -iEj
iE; iEp iEz 0]
0 -iBs  iEp cBr
iE 0 -iE;  cBo

* 3

Fog = , (8e)
-iEo iEq 0 cB3

-cBy -cBp -cBy 0

The first of equations (7b) has but four independent components obtained by
setting afy = 123, 124, 134, and 234. Rquation (7c) is a direct consequence
of equation (7a) and the antisymmetry of faB; FQB is the dual tensor of Faﬁ-

Formally the metric is a definite form, since in terms of the coordinates (8a)

ds? = dxl2 + dx22 + dx32 + dxug, where ds is the length of a line element in

space-time.

Maxwell's equations, together with the relation FaB = %9 fGB (in vac-
J o]

uum), constitute the axioms of electrodynamics. As written here (in the nota-
tion of special relativity) they apply to inertial reference frames and, in
particular, to the laboratory frame. It is assumed, though, that the curvature
of space-time is negligible. Aside from this assumption, no constraints are
placed on the material medium, its state of motion, anisotropy, temperature,
mechanical stress, or the like. (Properties of the medium appear in the con-
stitutive relations, which the ensuing treatment is not concerned with.)

The axioms have, of course, been recast into a number of varied forms.
(See Truesdell and Toupin (ref. 5, pp. 666-668), Sommerfeld (ref. 3, pp. 286-
287), and Fano, Chu, and Adler (ref. 8, pp. 389, 480, and 483).) The procedure
which follows can be applied to each of these.

Hilbert's view that all natural laws should be expressed in integral form
is adhered to in the preceding formulation. (See ref. 5, p. 232.) 1In integral
form the axioms have uniform applicability. In regions of regularity they are
identical with Maxwell's equations in differential form, which are obtained from
set (7) by using the divergence theorem

10



fag,p = Ta (9a)

F“B)'Y + FB?’)“ + F7G->B =0

or . (9p)
Fag,p = O

PB’B =0 (90)

(set (9) is presented by Sommerfeld (ref. 3, pp. 216-218).) At surfaces of dis-
continuity the axioms give the jump conditions or boundary conditions which
shall now be derived.

Derivation of the Boundary Conditions
for Electric and Magnetic Fields

The four-dimensional procedure to be followed was first applied to the
boundary conditions for electric and magnetic fields by Luneburg (ref. 4) and
later by Truesdell and Toupin (ref. 5). The following treatment is more gen-
eral since it includes surface charge and surface current which are essential
in many applications.

Surface current and charge.- Surface charge density n appears, for
example, EPenever conductors are placed in an electric field. Surface current
density L arises by convection of 1n or by conduction in the ;;ndt of infi-
nite conductivity or zero skin depth. For stationary surfaces L is locally
tangential; but for moving surfaces it seems likely that L should have a nor-
mal component arising from convection of 1 in the normal direction.

A surface quasi-four-current density

Aq = (Ll:LZ;LB:iCT]) (10a)

may be defined for a fixed surface w(x,y,z) = 0 by

. Xj(T)

Ay, = lim JF Fapj dXJ
=0 Xj(—T)

where nj is the local unit normal and the end points of the line integral 1lie

on the surfaces ¢(xj) = r. But for a moving surface the integration must be

made over a moving line element which follows the surface through displacements
in the normal direction, and the definition for Ay, with reference to figure 3,
then becomes

11



Ay = 1lim L/j
™0

Xj ,'t(’l'

308(-7)

( dx; - N dt) (10p)

where the end points of the line integral lie on the moving surfaces

\\
z/ ) \ olx,y, 2, 1)=0
AN

p=-T
Figure 3. - Two-dimensional moving surface in space (edge
view) with surface-charge density T and surface-
current density Li shown.

ol

@(XJ,t) = #r. Alternately, from
equation (3)

.

_ do

Ay = lim —t (10c)
50 f ey

The term A, is called a quasi-four-vector
because the product |V¢lAa is a Lorentz

invariant, although Ay ditself is not.

These transformation properties are pre-
sented in appendix A.

Boundary conditions on H and D.—
Tn axiom (7a) choose V to be a segment
of the hypervolume included between hyper-
surfaces @ = %1, as i1llustrated in fig-

ure 4, and teke the limit as T — 0

i_i)glﬁ%gfaﬁuﬁ = llle" av (11)

ict

(+)

cp:.

its unit four-normal mg the volume integral

If do denotes an element of the hypersurface
0 and mg de denotes a line element along

may be written in the limit as an integration
over o and its four-normal

o 11mffffr av = 11m/:[[dcfx3 _T; Tamg dxg

2
Pix,y,2,4) =0 (l )
Figure 4.- Four-dimensional hypervolume V The integral over S may also be changed to an
enclosed by three-dimensional hypersur- integral over o, since the edge contributions
face S in space-time (viewed along con- £ S ish i th e .
stant @ hypersurfaces with spatial o vanish in the limit, and equation (11)
dimensions contracted). becomes

Mﬁw]% do = 11m Mdcfx((:) Tomg dxg (13)

12



where mg is the unit four-normal to @ = 0 given by equation (4), and [G]
denotes the discontinuity Gt - G- at ¢ = 0 with % signs relative to mg.

Using equation (6) to change variables in the line integral on the right
of equation (13) gives

[[[I:f’aamﬁdc=iig f[fwf_Ir

and by definition (1Oc)

M[faams do = ﬂ]dal\m :EP(L' (15)

where A, 1s the surface quasi-four-current density (eq. (10a)). Since the
remaining integration is over an arbitrary portion of the hypersurface ¢ =
and the integrands are assumed to be continuous along the hypersurface, the
integral signs may be dropped and the equation written

(1k)

a 1L
7 = (16)
Foglme = % 507
on @ = 0. Substitution of equation (4) gives
[faﬂ]m’s = AW | (17)

on @ = 0, and this is the boundary condition derived from axiom (7a) in covari-
ant four-dimensional form.

This boundary condition has a corollary which is readily obtained by multi-
plying both sides of equation (17) by ?,a The left-hand side of this equation

vanishes since fGB is an antisymmetric tensor, and the corollary is obtained
in covariant form

?,ahq = O (18)
on @ = O.
Condition (17) and its corollary (18) may be translated to three-
dimensional form by expanding the left-hand sides of both equations and
dividing by |W|:

13



[fa,j]q{%.‘ + l:fod{l% = Ag, (19)

?,3
| %

Pt
+ A 2 =0 (20)

A 2 =
. * e[

By definitions (1) and (2) these equations become

[fa,j:l ny - I:fah % = Aq, (21)

N
Ajnj - Ay Ic =0 (22)

The function ¢ no longer appears explicitly, and I:G:l denotes the discon-
tinuity Gt - G- with * signs relative to the spatial normal nj. Substitution

of the field matrices (8c) and (10a) gives for the first three components of
condition (21)

~ = - -
A x [HJ + N[D] = L (23a)
for its fourth component
5. [B]=n (23b)

and for the corollary (eq. (22))

~ -
n-L-Np=0 (24)

at a moving surface of discontinuity.
Boundary corditions on E and IS).- Axiom (7b) is clearly amenable to the

foregoing treatment, and the resultant boundary condition in either of two
covariant forms may now be written by inspection as

[ch,B]q)ﬂ + [FB{]q),a + E_:'ya ®,p =0
) (25)
[F;B]CP,B =0

14



on @ = 0. Translation of condition (25) to three dimensions gives

fi x [E:] - N[’B’] =0 (26a)
A - [Ta’] =0 (26b)

at a moving surface of discontinuity.

Discussion.- A comparison of boundary condition (23a) with the corre-
sponding Maxwell equation curl ﬁ) - B,t = 3? shows at once that the term -N[_D)]
reprﬁfents a surface displacement current density arising from the rapid change
in D vwhich a fixed observer would note as the moving surface passes him by.
Similarly, the term -NEEil of boundary condition (26a) is the surface counter-

= = o
part of Bt from Maxwell's equation curl E + B ¢ = O.

The result that N, the speed of displacement of the electromagnetic-
discontinuity surface, is the only velocity that appears in the boundary con-
ditions (although the material medium is in no way restricted to purely normal
motions) was anticipated in the section entitled "Moving surfaces." Also
expected was equation (24) for the normal component of surface-current density

f? arising from convection of surface-charge density 17 in the normal direction.

Derivation of the Current Boundary Condition

Four-dimensional form.- The current boundary condition at a surface of
discontinuity which carries surface charge density n and surface current
-
density I evolves from axiom (7c)

B raie o

with the closed hypersurface S as depicted in figure 4. It is convenient to
split the integral as shown:

M Pa“a@+/mfwads=° (21)
1] L

vhere S, denotes the two parts of S parallel to the hypersurface ¢ = 0
and S; i1s the hypercylindrical part of S which cuts ¢ = O and is ortho-

gonal to it.

15



The intersection of hypercylinder S, with hypersurface ¢ =0 is a

closed two-dimensional hypercircuit which surrounds a region o on ¢ = 0. In
the 1limit as T — O the integral over 8S;; may be written as an integral over

o, and equation (27) becomes

M[ra%dc+iﬁmlrwa$=o (28)

where m, is the unit four-normal to hypersurface ¢ = O defined by
equation (4).

The integral over S, in equation (28) does not vanish here as T - 0,

in contrast to the previous derivation (eqs. (11) to (13)) since the defining
equation (10c) for Ag = (Ll,Lg,LB,icn) implies that TI'y is infinite on

@ = 0. Evaluation of the integral is begun by defining an orthogonal set of
four line elements

oxy;  Axy meme dxe Mate dXe (29)

where

8x“,Axv are the components of two orthogonal line elements which lie along
the two-dimensional intersection of hypercylinder §; with hyper-

surface ¢ = 0

m. dx is a line element along the unit four-normal on ¢ = O
Myle Xe My, 5

BoHe X is a line element along u,, the outward unit four-normal on S,

The relevant hypersurface elements written in terms of set (29) are

my do = BNy (“7\“6 d.xe) B, A%, (on @ =0)  (30a)

Hg S = ’Saﬂpv(mﬁm7 dxy)quAxv (on 8,) (30p)
where the Levi-Civita symbol
+1(-1) (for oBye an even (odd) permutation of 123L4)

Bapye = (31)

0 (for two or more indices alike)

16



The line elements Bxy, and Ax, have circumferential directions on the
hypercylinder S, and may be combined in a tensor element dSHV given by the

determinant

T T
d.suv =
Bx, Ax,
so that
Ho dS = - % Saﬂuv(mﬂm?. d.X7)dS“v (On S_L) (32)

Thus equation (28) becomes

L TreJms as - lim 3 G s f 7 Buvaplomgmy dxy = O (33)

»(~7)

and from equations (6) and (10c)
1
fﬁ[ra]% -3 ﬁ v Suvapiarp {Zﬂl =0 (34)

Here the second integral is over the closed hypercirecuit on ¢ = 0 which
bounds region o of the first integral. The second integral can be trans-
formed to an integral over ¢ by Stokes' theorem, one form of which states

(app. B)
j@f dsyy ¥y = I[f do mgBen iy ¥uv , A (35)

This transformation is carried out in appendix B, and the result obtained is

_[[[[r{,ma do + W AT{';:: % 45 = 0 (36)

on ¢ = 0. By the same argument that precedes equation (16),

[ ma+(irgzl|)—’“=0 (37)

17



on @ = 0. Substitution of mg from equation (4) gives the current boundary
condition in covariant four-dimensional form

[Fdo,a * (aalwl), (38)

on @ = 0. Incidentally, condition (38) can also be obtained by differentiating
condition (17), substituting equation (9a), and utilizing the antisymmetry of

o

The remaining task is the translation of this boundary condition to three-
dimensional language. For the second term, in particular, this translation
requires a close scrutiny of the formal treatment of surface densities.

Functional dependence of surface entities.- It is appropriate, physically,

to conceive of the surface densities f? and 1 as being defined only on the
surface of dlscontlnulty ® = 0. But this concept is awkward mathematically
when the divergence of I 1is required, as in the second term of equation (38).
On the other hand, equation (10Oc), which defines Ay = (L,lcn) at the surface
@ = 0, may as readily be applied at any surface of the manifold

o(x,y,2,t) = Constant. By this process A, becomes Ag(x,y,z,t) - a vector
field defined throughout a region of space-time. This is the concept adopted
here.

To be viewed in like manner are the spatial normal ﬁ(x,y,z,t) and the
surface speed N(x,y,z,t), both of which are derived from the surface function
o(x,y,z,t). Ultimately all quantities shall be evaluated at the surface Q =

Translation to three-dimensional form.- When divided by |V¢| and expanded

(by using egs. (1), (2), and (8b)), the first term of condition (38) becomes

Ira) [(PV’:| -5 - [7] - wpe] (392)

where [G] signifies the jump Gt - G- at the surface, with * signs relative

to the spatial normal n. Translation of the second term of equation (38) to
three-dimensional form (as carried out in appendix C) gives

1 . a 8 A A A fe
@(Aalvqﬂ ),cc = (a + N a—n>n + Nn divn+n . curl{d x L) (39Db)

N

where gl =n . V 1s the normal derivative and gi + N Sa) 1s the displacement
n n

derivative following the boundary through displacements along its local normal.
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As shown by McConnell (ref. 9, p. 206), the expression div N 1s related
to the mean curvature C of a constant ¢ surface by

~

C = -divan (403-)

where C > 0 for concavity in the sense of n. (Here C is used in place of
2H, and in Cartesian coordinates, gTs = 5r5.>

The last term of equation (39b) has an alternate form

A >

n - curl(ﬁ X f) = 'divsurface(ﬁ X (n X L)) (Lov)

as the two-dimensional surface divergence of the local projection of f on a
constaht ¢ surface. This identity follows from the theorems of Stokes and
Gauss applied to thils surface over an arbitrary area a and its bounding con-
tour line 1

ﬂﬁ . curl(ﬁ X i’)da

Il
o)
—~
o
X
=
~—
oy
o~

- f divsurface(ﬁ x (8 x f))da

The local projection of f may also be written
-ﬁx(ﬁxf)=f-ﬁl\m (4oc)
by corollary (24).

Substitution of expressions (39a) and (39b) into condition (38) with iden-
tities (40) completes the translation, and in final three-dimensional form the
current boundary condition is

ﬁ-[?]—l\l[p]+ﬁ-curl(ﬁxf)-CNn+(§-£+N£>n=O (41a)
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or

a . [3’] - N[p] - divsurface(ﬁ X (ﬁ X f)) - CNq + -a% + N 8% n=0 (LIb)

at a moving surface of discontinuity.

The curvature term takes account of changes in the surface area as it
moves. Thus for an expanding sphere in vacuum, with a fixed total charge uni-
formly distributed on its surface, the current condition reduces to

ot on

the charge is distributed over an }ncreasing area; and this is just compensated
by the curvature term, where for n radially outward N 1is positive and C,
negative.

-CNn + <§L + N ji)q = 0. The displacement derivative of 1 1s negative since

Sign convention.- A review of the sign convention is given below:
\

Four-dimensional form (fig. 2):
Hypersurface equation o(x,y,z,t) =0
Field discontinuity [d] = Gt - G- with * signs relative to ?,a

Three-dimensional form (fig. 1):

A

? (42)

Surface unit normal n
Surface speed N >0 for motion in the sense of a
Surface curvature C > 0 for concavity in the sense of n

Gt - G- with * signs relative to 1

I

Field discontinuity Dﬂ

J

The results of part I are displayed in tables I and II, which show the
correlation between the differential and surface forms of Maxwell's equations
in four and three dimensions.

20



TABLE I.- EQUATIONS AND CORRESPONDING BOUNDARY CONDITIONS

IN FOUR-DIMENSIONAL COVARIANT FORM

Maxwell's equations

Jump conditions at hypersurface o¢(x,y,z,t) =0

fag, = Ta
Fap,y * Fpy,a * Fya,p = O

or F;B’B =0

T'g,p=0

[f“B]cP:B = A |; 9,873 = 0 (Corollary)
[Fdaﬂ](p,y + [FB7]q),c(, + [F7’d, 9,3 =0
or [Fplo,p =0

[re)o,e + (Aﬁl“f’l),B =0

TABLE II.- EQUATIONS AND CORRESPONDING BOUNDARY CONDITIONS

IN THREE-DIMENSIONAL FORM

Maxwell's equations

Jump conditions at surface moving with speed N

=2 > -
curl H - Dy =4d
J

A —] - -
n X [H + N[D] =L N
n-L- Ny = 0 (Corollary)
A (8] =
A~ —] g
n X [E - N[B] =0
A _)..
n - [B =0
N _'; ~ ~ -
n-. [J - N[p] - divsurface<£ X (n X L))

d d
-CN S +NZlh=0
nt (Bt Bn)n
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IT. ELECTRODYNAMIC TRACTIONS AND POWER TRANSFER AT A MOVING BOUNDARY

General Considerations

The following identity may be derived directly from Maxwell's equa-
tions (9a) and (9b), as in Mgller (ref. 10, p. 202):

1 1 d [ 1 5

where Tg, Fgqg, and f,g are the electromagnetic field tensors defined in

set (8). This identity, due originally to Minkowski, may be regarded as a four-
dimensional statement of the electrodynamic momentum and energy conservation

laws - in which case the differentiated quantity on the right is designated the
stress-energy tensor TaB and either side represents the electromagnetic four-

force density ky. Interpreted in this way equation (43) may be written

-1 1 -
Ky = 5 Feelg + E(Feyfey,a - Fey,afe7> = Top,p (44)
where
= o lp ra + 9B r by
TG‘B = - E Fa‘e Be + )+c F97 97 ( 53‘)
or in matrix form
° - -
EiDj + HiBj - Wdi : —ic(D X B)i
TR = | eeeerennesnnsnnennneniaens Cereneaes (45b)
(2,7 . W
with
\
Ti; Maxwell stress tensor EjDj + HijBj - Wdjj
W electromagnetic energy density %(—FE) . B +3B . _I-f))
Y (45c)
=2 D
D X B electromagnetic momentum density
f?x ﬁ? Poynting vector, or electromagnetic energy flux vector

j
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The first three components of the four-force density

o = (kl,kg,kB,iEp> (46)

give the electromagnetic pondermotive force per unit volume; in the fourth com-
ponent p 1is the power per unit volume lost by the fields through conversion
to other types of energy (kinetic, thermal, etc.); p 1is alternately termed the
power transfer density.

Incidentally, terms may be added to both sides of equation (43) which pre-
serve the identity but change &k, and Tgg. (See Mpller (ref. 10,

pp. 204-206); Pauli (ref. 2, pp. 108-111); and Fano, Chu, and Adler (ref. 8,
Pp. 492-499).) No general agreement yet exists on which form is correct, but
the procedure which follows (treating Minkowski's form) is applicable to each.

Derivation of the Electrodynamic Conservation Laws
for a Moving Boundary
A surface form of the momentum and energy conservation laws may be derived
from equation (44) by the same procedure used to obtain the boundary conditions
from Maxwell's equations in part I. Let o(x,y,z,t) = 0 define the moving and

deforming surface under consideration. (See fig. 3.) By direct analogy with
the surface quasi-four-current density Ay = (Ll,Lg,L5,icn) take

Kq = <Kl,K2,K3,%:-P> (ll"?a)
to be the surface quasi-four-force density defined by (eq. (10c))

.
: dop

-1 (470)
o o f—T Tl

where X4i 1is the electromagnetic surface traction and P the power transfer
per unit area at the surface.

It is clear that equation (44), with its center expression omitted for the
moment, is formally similar to Maxwell's equation (9a), and its surface form
may be written by inspection (eq. (17))

Kl % | = [Tag]®,p (18)
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The surface form of the center expression in equation (44) may now be obtained
by recalling that the center expression and right-hand side of this identity
are related by Maxwell's equations (9a) and (9b); hence, the corresponding terms
in the surface form of the identity are related by boundary conditions (17) and
(25) - which are the surface forms of (9a) and (9b). Formal substitution of
these boundary conditions into the right-hand term of equation (48), as carried
out in appendix D, yields the desired center expression

Kq = ':';<Fa.6> Ay + IlgT;: | <Fe;> (o8] - [Fog) <fea> - %T[TGB] (49a)

or by identity (D2)

_1 1 %a fo- o + -\ _ 9,8
Ko = ¢ <Fae> Ay + 2 I‘ch|<FereB - Fesfes) = IV@I[T“B] (49p)
at o(x,y,z,t) = 0, where
- (gt -). - ot _ o=
(& =Le*+0a); [G] et - a (49c)

with the * notation defined in set (42). This is the surface conservation law
in covariant form. Its translation to three-dimensional language involves the
substitution of equations (1), (2), (8c), (8d), (10a), (45b), (45c), and (47a)

. . 1 12 =2 =2 21
with the identity -— fopF = —(H «-B-D- E). The first three components of
Le OB76B T 2

equation (49) become

- n(3) +Tx () + <[E;’] (3 - (&) - [3])
OO B -[7) eafxs]  con

where Efj -1 represents [Tii]nj’ or

o] =4

R-n(B) +Tx (B) + 8 - - & - B) + 5@ - B - - B
> ~ 2> A ~ pexd =
= [E D - n) + H(B . ni] - n[W] + N[D X B] (50b)
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where Tij (eq. (45c)) has been substituted; this is the surface form of the
electrodynamic momentum conservation law. The fourth component becomes

2@ 16y - @ - [) 2l - @ - @ - )

-a [fx if] + N[W] . (51a)

+d
i

I

or

lae)
]

- - = - - - - - - -
L - <E>+§<E+-D"—E"-D"> +g(H+-B--H'-B+>

4 - [Ex®]+nfw] (51p)

]

and this is the surface form of Poynting's theorem, or the conservation of
electrodynamic energy. Tables III and IV display the volumetric and surface
forms of the conservation equations in four and three dimensions.

Identities Derived From the Antisymmetric Part

of the Stress-Energy Tensor

The stress-energy tensor TaB: as defined in set (45), is asymmetric; but
it may be written as the sum of a symmetric and an antisymmetric tensor.

TG'B = %(TG'B + TBG') + %(TQB - TB“) = Tg'B + Tg'B (528')

where, by equation (45b),

0 M3 -Mo -icRy
-M3 0 My -icRp
Top = (52b)
Mo -M31 0 -icRz
icRy icRo icR3 0
with
H-LEx3+8x3)
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TABLE III.- MINKOWSKI CONSEHVATION IAWS .IN FOUR-DIMENSIONAL COVARTANT FORM

Volumetric (differential) form

Surface form at @(x,y,z,t) = 0

L

_1
= 5 Faglo + =

= Tap,p

(Fe 7foy,a - F97,a.f97)

Kq

[

7209 B0 )

P8
I+l

(eg)

TABLE IV.- MINKOWSKI CONSERVATION LAWS IN THREE-DIMENSIONAL FORM

Volumetric {differential) form

'
-div(E x &) - Wt

ki=pm+(3x§)i+%(a,i.3-3-3,i)+%(§,i.3-§.s,
_ - —>)
—Tij,d-(DXBi’t
- - 1{2 - =d - 1{= - -3 -

P=J - E+5E Dy -Ey D)+ZH-By-K¢-B

-
K=

n

Jump form at surface moving with speed N

NORESEORE (CRRCRRON L RS- (RO E)

[?] - n +N[3x E’]

2 @i G- @B G- @ B

A [i’xi’] + N[w]
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The antisymmetric part i has been a subject of discussion since its incep-

aB
tion by Minkowski in 1908. (See Mgller (ref. 10, pp. 204-206) and Pauli
(ref. 2, pp. lOB-lll)J Splitting the four-force densities also

"o = Top,p * Tap,p = Mot a (53)

i lwl[“‘-”] |wl[“B] ot o

enables a number of relations between the antisymmetric’ parts T2, ng, and K%

to be obtained by inspection of formally identical equations in tables I and II.
These relations should provide a fresh vantage point for the symmetry issue.

Both fgg (eq. (8c)) and TgB (eq. (52b)) have the same antisymmetric

form; utilizing equations (9a) and (53), (17) and (54), with definitions (8b)
and (46), (10a) and (47a), the terms may be paired as shown:

Four-dimensional pairs:

(55)
a a
TaB Ko Ki
Three-dimensional pairs:
- - - -
H D J p L 1
> oS5 = - - - - = - = (56)
LExD+HxB LpxB-L ExH w Lpa g Lpa
2 2 02 02 02

Thus tables I and ITI go over by direct substitution to tables V and VI and give
the tractions and power transfer (with related identities) contributed by the
antisymmetrical part of the stress-energy tensor.
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TABLE V.- ANTISYMMETRIC RELATTONS IN FOUR-DIMENSIONAL COVARTIANT FORM

Volumetric (differential) form Surface form at o(x,y,z,t) = 0

T;B:B = [TE-B]T’_Bl‘ = XG5 @ Blg =0 (Corollary)
) 3

5,8 =0 ["3}",8 * <“3|V‘1’|>,B =0

TABLE VI.- ANTISYMMETRIC RELATTONS IN THREE-DIMENSIONAL FORM

Volumetric (differential) form Jump form at surface moving with speed N

5> o - - ~ - = > o 5 o
cu:l(EXD-VHx]_B))—(BXB--lEEXH) =2_ﬁanx[EXD+H><]_3)]+N[DXB-—1—EXH]=2?
c
t

2

o>

o ig NP® = 0 (Corollary)
C

msxs*-ifxéipa 3 mB-Azxa]:zpa
? c2 el 2

B 8 - ".["]_l[a]_ a (’” _)>__l_ A1(9 , y Opa .
aiv k +«c—p’t o] n c2p AV ppeeld X (B x K cecma+023t 1\1a P (o]
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APPENDIX A

TRANSFORMATION PROPERTIES OF THE SURFACE DENSITY

QUASI-FOUR-VECTORS

The surface quasi-four-current density A, and quasi-four-force density
K, are defined on a moving surface @(x,y,z,t) = O by equations (10) and (47),
respectively. Their behavior under the Lorentz transformation is apparent from

equations (17) and (48), since [faél(p,B and ETG»BJCP g 2re clearly four-

vectors and, consequently, Aq|Vp| and Ky|Wp| must be also. Thus, if

X,¥,z,t and x',y',z',t' are two inertial frames related by the Lorentz
transformation

A V9] = Za,BAﬁIprl
(A1)
Al | = Ag'| Vot 1py

with identical relations for K., where

q)(x;y')z;t) = CP'(X' 'zt A

V'=({l—a-—+,i\.ai+/{5-a—-aT
Z

ox' ayl

and 1y 1is the Lorentz transformation matrix. (see Mpller (ref. 10, pp. 94
and 118).) These are the surface density transformation relations.

It also follows from the scalar invariance of |[]¢| and from equa-

tion (5b), that Ay Vel Ao, and Kgq Vol _ _ Xa are also

ool 1 - w2/c2 ool Vi - n2fc2

four-vectors. Hence the transformation relations may alternately be written

N
1

Ay, _ s
-2/ "o V1 - w2/c2

Ay _ A
Vl - 1\12/c2 V1 - N'2[c2

(A2)

13@
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APPENDIX B

APPLICATION OF STOKES' THEOREM TO THE CURRENT

BOUNDARY CONDITION

For a closed two-dimensional hypercircuit on a hypersurface (which is
taken here to be o(x,y,z,t) = 0), Stokes' theorem states (Synge and Schild

(ref. 11, p. 269))
5@( dsyy ¥y = [f Vop,y opy (BL)

where Wuv is an arbitrary set of functions of the coordinates (a tensor for

the present purposes), and, in terms of the orthogonal set of line elements (29),

Mope dxe  Bxy A%y
6xu Ax,
L
1% 14

Hole dxc  BX,  Ax,

By introducing the dual four-vectors (Mpller (ref. 10, pp. 112-117))

*
i'9 - % SGMV\VM,V

(B3)
dof = 317 Boapy 10aay

the right-hand side of theorem (Bl) may be rewritten

ﬁ ds ¥y = 3! f/f Fodop (Bk)
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APPENDIX B
The element dcg may be further reduced by equations (B2), (31), and (30a) to

yield

do} = 89&{37(“ e dxe) dxplx, = mg do (B5)

where mg 1is the unit four-normal on @ = O, and equation (BY) becomes

jé%\dsuvav = k/J]ﬂdd m989%“kuv,%

which is the form of Stokes' theorem given in equation (35).

Using theorem (35) in equation (34), with Y = Buvaphalp

fff[roama do - % Mdc Mg B N1y Suvap | Aup :qu1|> =0 (B6)
A

But
SonuvBuvap = g(aeaskﬁ - Skaamg (BT)

where dgpg 1s the Kronecker delta. Hence

L Trefa 0o - N e %(Aama %)}B - ms(Aam :ZT") =0 (88)

Since mgAq = @,qf\q = O Dby corollary (18) and mgmg = 1 by equation (4)

N e 0 - J[[] o le (o - ) - <%>

(B9)
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APPENDIX B

But

P P ’ ) ’ )
B, sB |[] l , |E] ] , | |2 B @

Therefore

[l raJma as + []] as

or

ﬁ[[ra mOL do + /[f Aa:;cp(pl| =0 (B12)

and result (36) is thus established.
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APPENDIX C
VERIFICATION OF IDENTITY (39b)

Identity (39b) is most easily checked by manipulating the right-hand side
as shown below:

F‘J;—'(Aalw |),a =1 +Ip

where

) o) ~
I, =[S+ 2 Nn ai

A

~ -
n - curl(n X L)

—
N
Il

Combining terms in 1Ij

I, = n - ?%(ﬁq) + N div(ﬁ'q) (c1)

and substituting equations (1) and (2) gives,

J
I = % (c2)
Y IIchl > (Ichl >

Because x) = ict (eq. (8a)) and Ay = icn (eq. (10a))

I, = 22 ‘Li_Ah> _ 2k &LM>
i\l 7/, Iwlwl 7/,

P
1 {%,d
= e c
et (1), - o5 ||w|“’“> )
sd
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APPENDIX C

and by corollary (18)

1 1 [?
1 - 2 (wlay) , + Ao ia (ck)
| | A I\l 7
In tensor notation, Io is given by
4 ?,1
Ip = —2— € jk|€kim — > (c5)
| | || /.3

where the Levi-Civita symbol

+1(-1) (for ijk an even (odd) permutation of 123)

€13k = (cé)
0 (for two or more indices alike)
It follows that
€1 5kkim = 511%m - %imBj1 (cT)
where 844 is the Kronecker delta, and equation (C5) becomes
P4
I2 = 2 j> ‘< i
| | IVCP| \| 7 | »J
N
—<|Vq>l J) N (c8)
| | 3 Iw\|w]

»d
When equations (Cl4) and (C8) are added, the second terms of each cancel

I, + Ip = Mﬁ(]w\./xj)d + F‘%—I<|V<P|Ah),4

Ich ol (lvq’lAa,) (c9)

and identity (39b) is thus established.
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APPENDIX D

ESTABLISHMENT OF THE CENTER EXPRESSION OF EQUATION (k49a)

BY MEANS OF THE BOUNDARY CONDITIONS

The following two ldentities are easily proved

[Fe] = [F] <8 + <®) [£]

-

Fe~ - F £ = [F] <f> - <F> [£] (p2)

where the notation. is defined by equations (49c). The center expression of
equation (49a) may be validated most easily by deriving the surface conserva-
tion laws from the boundary conditions by the procedure illustrated in Méller

(ref. 10, p. 202) for obtaining the volumetric conservation laws from Maxwell's
equations.

(p1)

Starting from the identity

<Fa,9> Ag = <Foc9 |w‘|:fe;3] (D3)

based on boundary condition (17) and substituting equation (D1) gives

< - %ST F“E’fe‘{l ) m[aﬂ] < 99 2|Vq) |Ea9] <fe‘3> (o)

The last term may be manipulated as shown

) ZT;;:I F“e:‘ <feﬁ> o 2T<,7ci IEG“] <fB °> T ET\,?; l[FB“] <feB>

so that equation (D4) becomes
?,s
e 20 = - o eatse] - {125y i) o
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APPENDIX D

Upon substitution of boundary condition (25)

<Fd,e> N = - I;:I 6 Bei‘ + :;::IE?QB:‘ <fe£> + j;:&eﬁ] <feB> (D6)

and by identity (D1)

Gt 2 = - il oo i) " () o [f"BD

(D7)

Hence, upon division by ¢

Lo - ] 2] e
¢ [+4) >

and with terms transposed

0o 232 () (5] - ] (o) - T 2

Bog
. Fe,fe,] (9)

he

or by definition (k45a)

0 (00 () ) )

which is the identity in question.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 18, 196k.
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